Pairs Plot in Python using Seaborn

Creating a Pairs Plot using Python

One of my favorite functions in R is the pairs plot which makes high-level scatter plots to capture relationships between multiple variables within a dataframe. To my knowledge, python does not have any built-in functions which accomplish this so I turned to Seaborn, the statistical visualization library built on matplotlib, to accomplish this.

#import seaborn
import seaborn as sb
sb.set(font_scale=1.35, style="ticks") #set styling preferences
%matplotlib inline

Load the example iris dataset

iris = sb.load_dataset("iris")
iris.head()
sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa

Look at a summary of the data

iris.describe()
sepal_length sepal_width petal_length petal_width
count 150.000000 150.000000 150.000000 150.000000
mean 5.843333 3.057333 3.758000 1.199333
std 0.828066 0.435866 1.765298 0.762238
min 4.300000 2.000000 1.000000 0.100000
25% 5.100000 2.800000 1.600000 0.300000
50% 5.800000 3.000000 4.350000 1.300000
75% 6.400000 3.300000 5.100000 1.800000
max 7.900000 4.400000 6.900000 2.500000
plot = sb.pairplot(iris, hue='species')

png

Change the bar plot to lines graphs.

plot = sb.pairplot(iris, hue='species', diag_kind='kde')

png

Change the palette of the plot.

plot = sb.pairplot(iris, hue='species', diag_kind='kde',palette='husl')

png